Working Math

Formulas, Units, Conversions

 This presentation has been adapted from "Math for Subsurface Operators" given at the North Carolina Subsurface Operator School

- Math will be used to
 - Determine a flow rate for a facility
 - Determine the minimum length of line needed for a drainfield
 - Calculate the minimum dose volume required

Basic Equations

- Area of a circle
 - $-\pi x r^2$
- Area of a rectangle
 - -Lxw
- Volume of a cylinder
 - $-L x \pi x r^2$
- Volume of rectangle
 - -Lxwxh

Equations

Area of a circle = π r² or 3.14 x radius x radius

The area of a circle with a 3" diameter is

 $3.14 \text{ x} (1.5 \text{ in x } 1.5 \text{ in}) = 7.07 \text{ in}^2$

Equations

Area of a rectangle or square = Length x width = square units

Converting Units

- A drainfield is 4 ft wide and 102 in long
- What is the area of the drainfield?

102 in \div 12 in/ft = 8.5 ft 4 ft x 8.5 ft = 34 ft²

OR

48 in x 102 in = 4896 in² 4896 in² ÷ 144 in²/ft² = 34 ft²

Equations

Volume of a rectangular tank:

length x width x depth = units 3

 $8 \text{ ft } \times 4 \text{ ft } \times 5 \text{ ft} = 160 \text{ ft}^3$

Conversion factor To convert cubic feet to gallons

• 1 cubic foot = 7.48 gallons

Equations

Volume of a rectangular tank:

$$8 \text{ ft } \times 4 \text{ ft } \times 5 \text{ ft} = 160 \text{ ft}^3$$

Determining Gallons per Inch

L (ff) x W (ft) x
$$\frac{1}{1}$$
 x $\frac{7.48 \text{ gal}}{12 \text{ in.}}$ = $\frac{\text{gal}}{12 \text{ in.}}$

Example: A tank is 10 feet long and 4.5 feet wide – How many gallons are there per inch of liquid depth?

10 ft. x 4.5 ft. x 1 ft. =
$$45 \text{ ft}^3$$

$$45 \text{ ft}^3 \times \frac{7.48 \text{ gal}}{\text{ft}^8} = 336.6 \text{ gal}.$$

Example: A tank is 10 feet long and 4.5 feet wide – How many gallons are there per inch of liquid depth?

$$336.6 \text{ gal.}$$
 = 28.05 gal. 12 in. in.

Equations

• Volume of a cylinder (e.g., a tank or pipe):

$$\pi r^2 x$$
 length

• Operating volume (ft³) of a cylindrical pump tank:

$$\pi$$
 r² x length (or depth)

 $(3.14 \times 1.5 \text{ ft } \times 1.5 \text{ ft}) \times 5 \text{ ft} = 35.3 \text{ ft}^3$

• Operating volume (gal) of a cylindrical pump tank:

Volume (ft³) x
$$\frac{7.48 \text{ gal}}{\text{ft}^3}$$
 = gallons ft³
$$35.3 \text{ ft}^3 \times \frac{7.48 \text{ gal}}{\text{ft}^3} = 264.04 \text{ gal}$$

• Volume of a pipe can be calculated the same way:

 π r² x length x 7.48 gal/cu ft

Pipeline Volume (Gallons per 100 feet)

	PVC Rigid Pipe		PVC Flexible Pressure Pipe		
Nominal Size (inches)	Schedule 40	Schedule 80	SDR 26 (160 psi)	SDR 21 (200 psi)	Corrugated tubing
3/4	2.8	2.2			
1	4.5	3.7	5.8	5.5	
1 1/4	7.8	6.7	9.6	9.2	
1 ½	10.6	9.2	12.6	12.1	
2	17.4	15.3	19.6	18.8	
3	38.4	34.3	42.6	40.9	
4	66.1	59.7	70.4	67.7	65.3
6	150	135	153	147	147

Units of Measure and Calculations Calculating percent First, divide one number into another: $A \div B = quotient$ The quotient expresses how many times a quantity is contained in another. A = 20; B = 30 $20 \div 30 = 0.67$ So, A is: 0.67 the size of B Calculating percent When we multiply the quotient by 100 we obtain how many times a number is contained in 100 of another (percent). Using the same example: $0.67 \times 100 = 67$ So, A is: 67% the size of B

Calculating percent

There are 50 dots shown above and 20 of them are black. What percent of the dots are black?

Divide # black by total $20 \div 50 = 0.4$ Convert to percent $0.4 \times 100 = 40\%$

Calculating percent solids in a septic tank

- Liquid depth = 60"
- Scum depth = 6"
- Sludge depth = 18"

Add amount of scum and sludge 18"+6"=24"

Divide by tank liquid depth $24" \div 60" = 0.4$

Convert to percent $0.4 \times 100 = 40 \%$

Units

Pressure: Force applied to a unit area. Expressed in:

- pounds per square foot (psf)
 A tank lid designed to support 150 psf.
- pounds per square inch (psi)60 psi pressure of water in a force main
- Feet of head

An alternative expression of water pressure psi x 2.31 = Head (ft)

Units

Concentration

- -Milligrams per liter (mg/L)
- -Parts per Million (ppm)
- A system may have a requirement for the effluent not to exceed 10 mg/L (or ppm) of nitrate nitrogen.

% Reduction in concentration

is a reflection of the treatment efficiency of a system component.

% reduction =
$$\frac{influent - effluent}{influent}$$
 x 100

% Reduction in Concentration

 The influent concentration to a sand filter is 300 ppm BOD. The effluent concentration is 30 ppm BOD. What is the % reduction in concentration?

% reduction =
$$\frac{influent - effluent}{influent} \times 100$$

% reduction =
$$\frac{300 - 30}{300}$$
 x 100 = 90%

Units

Flow rate is volume per unit time

- -Gallons per minute (gpm)
- -Gallons per day (gpd)
- -Cubic feet per sec (cfs)

Flow Velocity

- Flow velocity is distance per unit time
 Feet per sec (fps)
- The minimum flow rate should be at least 2 fps for good scour
- The equation to calculate the minimum flow rate in a pipe of known diameter is:

4.896 x [pipe diameter (in)] 2 = gpm required

Flow rate in gallons per minute to achieve a flow velocity of 2 feet per second in rigid PVC pipe

2 reet per second in rigid i vo pipe			
Schedu	le 40 PVC	Schedule 80 PVC	
Nominal Dia.	Flow Rate	Nominal Dia.	Flow Rate
(inches)	(gpm)	(inches)	(gpm)
1	5.4	1	4.5
1 1/4	9.3	1 1/4	8.0
1 ½	14.2	1 ½	12.4
2	20.9	2	18.4
2 1/2	29.8	2 1/2	26.4
3	46.1	3	41.2
4	79.4	4	71.7
6	180	6	162.5

Pump Delivery Rate (PDR): the rate at which wastewater is pumped to the drainfield or	
treatment unit in gallons per minute (gpm)	
PDR = gallons of water pumped (gal) pump run time (min)	
40 gallons = 8 gal/min	
5 minutes	
	-
Hydraulic loading rate: the amount of wastewater applied per day to a given	
area of trench bottom or sand filter surface expressed as:	
gallons per day per square foot or	
gpd / ft ²	
Coloulate the Uniderville Leading Date to a send	
Calculate the Hydraulic Loading Rate to a sand filter surface, given:	
3 Bedroom home: 360 gpd Sand Filter is 18' x 10'	
HLR = gal. applied per day (gpd)	
area (ft²)	
= 360 gpd = 2.0 gpd $180 \text{ ft}^2 \text{ ft}^2$	
100111- 11-	
18011- 11-	

Example

An LPP Drainfield is 20' x 90' or 1800 ft². How many gallons per day can be dosed to the drainfield without exceeding the permit limit of 0.2 gpd / ft²?

Design flow in gpd

$$HLR = (gpd)$$

area (ft²)

An LPP Drainfield is 30' x 90' or 2700 ft². How many gallons per day can be dosed to the drainfield without exceeding the permit limit of 0.2 gpd / ft²?

area (ft²) x HLR = gpd / 2700 ft² x
$$0.2 \text{ gpd} = 540 \text{ gpd}$$

1	2

Slope

Slope correction is the process of determining, based on soil depth, amount of slope, system type, and trench width requirements if there is enough suitable soil to install a system

Slope

Slope is the ratio of the rise to the run (or the change in height over the length of the area)

The rise is 4 units and the run is 6 units from our graph, so the slope is 67%.

Slope Correction

Minimum soil depth = trench depth needed + (trench width x slope)

 $MSD = TD + (TW \times S)$

MSD - minimum soil depth

TD - trench depth

TW - trench width

S – percent slope

Slope Correction	
To install a conventional gravel trench on a 30% slope, what is the minimum soil depth needed?	
MSD = TD + (TW x S) TD - 30 inches minimum TW - 36 inches	
S – 0.3	
MSD = 30 in + (36 in x 0.3) = 41 in	